如何通过三角函数推导反三角函数的和差公式?

2025-02-09 07:29:29111 次浏览

最佳答案

正切公式:

1、tanb=sinb/cosb

2、tan(a+b)=(tana+tanb)/(1-tana*tanb)

注:若是a-b,则把后面的加减都换一下。

3、1/tanb=cotb(这个公式不常用,偶尔用也经常写成正切的倒数的形式)

4、tanB=q(常数)则角B=acttan(q),这是反函数的公式。

反三角函数的公式:

反三角函数的和差公式与对应的三角函数的和差公式没有关系:

y=arcsin(x),定义域[-1,1],值域[-π/2,π/2];

y=arccos(x),定义域[-1,1],值域[0,π];

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2);

y=arccot(x),定义域(-∞,+∞),值域(0,π);

sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx;

证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。