为什么说非齐次的特解相减等于齐次的通解

2025-03-04 17:30:11113 次浏览

最佳答案

非齐次线性微分方程

即y'+f(x)y=g(x)

两个特解y1,y2

即y1'+f(x)y1=g(x),y2'+f(x)y2=g(x)

二者相减得到

(y1-y2)'+f(x)*(y1-y2)=0

所以y1-y2当然是齐次方程

y'+f(x)*y=0的解

扩展资料:

非齐次线性方程组Ax=b的特解就是满足方程组Ax=b的一个解向量。非齐次线性方程组解的判别如果系数矩阵的秩小于增广矩阵的秩,方程组无解。

如果系数矩阵的秩等于增广矩阵的秩,方程组有解。在有解的情况下,如果系数矩阵的秩等于未知数的个数,非齐次线性方程组有唯一解。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。