椭圆抛物线的性质有哪些

2025-04-11 11:53:2179 次浏览

最佳答案

抛物线的主要性质有: 1.对称轴,x=-b/2a 2.开口方向(a>0时向上,a<0时向下) 3.最大及最小值:y=a(x-b)(x-b)+c 当X=b时y值最大. 3.与X轴的交点.当b*b-4ac>0时有两交点,当b*b-4ac=0有一交点,当b*b-4ac<0 时无交点。 就这样.

1、通径是过焦点的弦中最短的弦

2、对y^2=2px来说,过焦点的弦与抛物线交于A(x1,y1)、B(x2,y2),则y1*y2=-p^2

3、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),(1/AF)+(1/BF)为定值

4、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),过A作AA1垂直于准线于A1,过B作BB1垂直于准线于B1,M为A1B1中点,则AM⊥MB

5、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),C在抛物线的准线上,且BC//x轴,则AC过原点

6、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),向量OA、OB的数量积为定值

7、光学性质:过焦点的光线被抛物线反射后为一组平行光线。

8、设C为抛物线上一点,过抛物线的焦点F作直线L交抛物线于A、B,AF、BF分别与准线交于P、Q,则PF⊥QF。

9.过(2C,0)或者(0,2C)的一条直线与抛物线的交与两个点A,B 设抛物线的顶点为D 那么恒有角ADB=90度

这个结论对椭圆、双曲线也成立。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。