错位相减法的公式是什么?

2025-07-02 14:12:3476 次浏览

最佳答案

错位相减法万能公式:bn=b1+(n-1)×d。

如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式,形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:

(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2),然后错开一位,将式(1)与式。

(2)作差,对从而简化对数列An的求和,这种数列求和方法叫做错位相减法。

错位相减法举例:

求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)。

当x=1时,Sn=1+3+5+…+(2n-1)=n2。

当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1。

∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn。

两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。