大家都在看
回归直线方程的式子怎么得来的
最佳答案
你先看一下,能不能看懂?再问。
令线性回归方程为: y=ax+b (1)
a,b为回归系数,要用观测数据(x1,x2,...,xn和y1,y2,...,yn)确定之。
为此构造 Q(a,b)=Σ(i=1->n)[yi-(axi+b)]^2 (2)
使Q(a,b)取最小值的a,b为所求。
令: ∂Q/∂a= 2Σ(i=1->n)[yi-(axi+b)](-xi)= 0 (3)
∂Q/∂b= 2Σ(i=1->n)[yi-(axi+b)] = 0 (4)
根据(3)、(4)解出a ,b就确定了回归方程(1):
a Σ (Xi)² + b Σ Xi = Σ Xi Yi (5)
a Σ Xi + b n = Σ Yi (6)
由(5)、(6)是关于a,b的二元线性方程组,解出a,b代入(1)就完成了一元线性回归。
这一步请您自己做一下。
声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。