如何理解行列式的乘法法则?

2025-03-17 18:19:57101 次浏览

最佳答案

将矩阵乘以数字,并将得到的新矩阵中的每个元素乘以该数字。将行列式乘以一个数字,该数字只能是元素的行或列乘以此数字,而不是所有元素乘以此数字。

乘法结合律: (AB)C=A(BC).

乘法左分配律:(A+B)C=AC+BC 

乘法右分配律:C(A+B)=CA+CB 

对数乘的结合性k(AB)=(kA)B=A(kB).

转置 (AB)T=BTAT.矩阵乘法一般不满足交换律

扩展资料

行向量和列向量本身秩都为1,所以r(AB)<=1,即乘积小于等于1。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。 向量的加法OB+OA=OC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB.即“共同起点,指向被减向量”

a=(x,y)b=(x',y') 则a-b=(x-x',y-y')

c=a-b 以b的结束为起点,a的结束为终点。

3、向量的数乘

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。

当λ>0时,λa与a同方向

当λ<0时,λa与a反方向; 向量的数乘当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。