如何理解二进制原码,反码,补码,二进制补码运算

2025-08-03 15:03:0665 次浏览

最佳答案

带符号数,有三种表示方法,即:原码、反码和补码。

但是,在计算机系统中,数值一律用【补码】来表示和存储。

所以,在计算机系统中,原码和反码,都是不存在的。

使用补码的意义:可以把减法或负数,转换为加法运算。

因此,就能简化计算机的硬件。

=====================

补码的概念,来自于:补数。

比如钟表,时针转一圈,周期是 12 小时。

那么,倒拨 3 小时,可以用正拨 9 小时代替。

9,就是-3 的补数。 计算方法: 9 = 12-3。

同理,分针倒拨 X 分,可以用正拨(60-X) 代替。

60,是分针的周期。

懂得三角函数的同学,都知道,三角函数的周期是 2π。

那么,在-π/2 和 +3π/2 处的函数值是相同的,可互换。

算法是: +3π/2  =  2π - π/2。

------------

当你使用两位十进制数:0~99,周期就是 一百。

那么,减一,就可以用 +99 代替。

 24-1 = 23

 24 + 99 = (1) 23

舍弃进位,这两种算法,功能就是相同的。

于是,99 就是 -1 的补数。

计算: 补数 = 周期 + 负数

对于其它负数,自己去求补数吧。

------------

计算机中使用二进制,补数,就改称为【补码】。

八位二进制是:0000 0000~1111 1111。

相当于十进制:0~255, 周期就是 256。

那么,-1,就可以用 255 = 1111 1111 代替。

所以:-1 的补码,就是 1111 1111 = 255。

同理:-2 的补码,就是 1111 1110 = 254。

继续:-3 的补码,就是 1111 1101 = 253。

。。。

最后:-128 的补码,就是 1000 0000 = 128。

负数补码的计算公式:【 256 + 这个负数 】。

(式中的 256 = 2^8,是八位二进制的周期。)

正数,并不存在补码的问题。

所以,正数,并没有补码,可以直接运算。

(也有人乱说:正数本身就是补码。)

------------

求解算式: 7-3 = 4。

计算机中,并没有减法器,必须改用补码相加。

列竖式如下:

   7 的补码=0000 0111

    -3的补码=1111 1101

--相加-------------

  得:  (1)  0000 0100 = 4 的补码

舍弃进位,只保留八位,结果完全正确。

------------

借助于补码,可以简化计算机的硬件。

原码和反码,都没有这种功能。

所以,在计算机中,根本就没有原码和反码。

它们都是什么? 就不用关心了。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。