菱形的定义性质与判定

2025-02-18 17:48:3682 次浏览

最佳答案

定义:

一组邻边相等的平行四边形叫做菱形

性质:

对角线互相垂直且平分;

四条边都相等;

对角相等,邻角互补;

每条对角线平分一组对角,

菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形

在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍.

菱形具备平行四边形的一切性质.

判定:

一组邻边相等的平行四边形是菱形

四边相等的四边形是菱形

关于两条对角线都成轴对称的四边形是菱形

对角线互相垂直且平分的四边形是菱形.

依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形) ,对角线相等的四边形的中点四边形定为菱形.

菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。