初一下册数学一元一次不等式

2025-03-29 13:18:5384 次浏览

最佳答案

一、等式及不等式

1、等式的概念:

 一般的,用符号“=”连接的式子叫做等式。   注意:等式的左右两边是代数式。

2、不等式的概念:

 

一般的,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。 不等式中可以含有未知数,也可以不含)    

3、 不等式的性质:   

(1)不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。   

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。   

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。   

(4)不等式的两边都乘以0,不等号变等号。   

数字语言简洁表达不等式的性质——   

【1.性质1:如果a>b,那么a±c>b±c】   

【2.性质2:如果a>b,c>0,那么ac>bc(或a/c>b/c)】   

【3.性质3:如果a>b,c<0,那么ac

二、一元一次不等式

1、定义:

 用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式(linear ineqality with one unknown)。

2、解一元一次不等式的一般顺序:

 (1)去分母 (运用不等式性质2、3)   (2)去括号   (3)移项 (运用不等式性质1)   (4)合并同类项。   (5)将未知数的系数化为1 (运用不等式性质2、3)   【(6)有些时候需要在数轴上表示不等式的解集】

3.不等式的解集:

 一个有未知数的不等式的所有解,组成这个不等式的解集。例如,不等式x-5≤-1的解集为x≤4;不等式x﹥0的解集是所有非零实数。求不等式解集的过程叫做不等式的解。   2.一元一次不等式的解集   将不等式化为ax>b的形式   (1)若a>0,则解集为x>b/a   (2)若a<0,则解集为x

4.数轴:

 规定原点,方向,单位刻度的直线叫做数轴。

5.一元一次不等式组:

 (1) 一般的,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。   (2)一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。   1. 代数式大小的比较:   (1) 利用数轴法;   (2) 直接比较法;   (3) 差值比较法;   (4) 商值比较法;   (5) 利用特殊比较法。(在涉及代数式的比较时,还要适当的使用分类讨论法)

6. 不等式解集的表示方法:

 (1) 用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3。   (2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

7. 一元一次不等式与一次函数的综合运用:

 一般先求出函数表达式,再化简不等式求解。

8. 解一元一次不等式组的步骤:

 (1) 求出每个不等式的解集;   (2) 求出每个不等式的解集的公共部分;(一般利用数轴)   (3) 用代数符号语言来表示公共部分。(也可以说成是下结论)

9. 几种常见的不等式组的解集:

 (1) 关于x不等式组{x>a} {x>b}的解集是:x>b   (2) 关于x不等式组{xa   (3) 关于x不等式组{x>a} {xb}的解集是空集。

10. 几种特殊的不等式组的解集:

 (1) 关于x不等式(组):{x≥a} { x≤a}的解集为:x=a   (2) 关于x不等式(组):{x>a} {x

编辑本段一元一次不等式教案

 例3 解下列不等式,:   2x-1<4x+13;   2(5x+3)≤x-3(1-2x).   解 (1)2x-1<4x+13,   2x-4x<13+1,   -2x<14,   x>-7.   (2)2(5x+3)≤x-3(1-2x),   10x+6≤x-3+6x,   3x≤-9,   x≤-3.   例4 当x取何值时,代数式的值比的值大1?   解 根据题意,得->1,   2(x+4)-3(3x-1)>6,   2x+8-9x+3>6,   -7x+11>6,   -7x>-5,   得 x<7分之5   所以,当x取小于7分之5的任何数时,代数式的值比的值大1   练习   1.下列不等式中,是一元一次不等式的有[ ]   A.3x(x+5)>3x2+7;   B.x2≥0;   C.xy-2<3;   D.x+y>5.   2.不等式6x+8>3x+8的解是[ ]   3.3x-7≥4x-4的解是[ ]   A.x≥3;   B.x≤3;   C.x≥-3;   D.x≤-3.   4.若|m-5|=5-m,则m的取值范围是[ ]   A.m>5;   B.m≥5;   C.m<5;   D.m≤5.   [ ]   A.x>15;   B.x≥15;   C.x<15;   D.x≤15.   6.若关于x的方程3x+3k=2的解是正数,则k的值为[ ]   C.k为任何实数;   D.以上答案都不对.   7.下列说法正确的是[ ]   A.x=2是不等式3x>5的一个解;   B.x=2是不等式3x>5的解;   C.x=2是不等式3x>5的唯一解;   D.x=2不是不等式3x>5的解.   [ ]   A.y>0;   B.y<0;   C.y=0;   D.以上都不对.   9.下列说法错误的是[ ]   D.x<3的正数解有有限个.   [ ]   A.x≤4;   B.x≥4;   [ ]   A.x<-2;   B.x>-2;   D.x<2;   D.x>2,   [ ]   A.大于2的整数;   B.不小于2的整数;   D.2;   D.x≥3.   [ ]   A.无数个;   B.0和1;   C.1;   D.以上都不对.   [ ]   A.x>1;   B.x≤1;   C.x≥1;   D.x.>1.   [ ]   A.2x-3x-3<6,-x<9,x>-9;   B.2x-3x+3<6,-x<3,x>-3;   C.2x-3x+1<6,-x<5,x<-5;   D.2x-3x+3<1,-x<-2,x<2.   (二)解一元一次不等式   16.31.   26.3x-2(9-x)>3(7+2x)6x).   27.2(3x-3(4x+5)≤x-4(x-7)   28.2(x-1)>3(x-1)-x-5.   29.3[-2(y-7)]≤4y.   31.15-(7+5x)≤+(5-3x).   对于任意两个实数a,b,关系式是a>b,a=b,a0时,有a>b,   当a-b=0时,有a=b:   当a-b<0时,有a

编辑本段一元一次不等式应用题:

 1、一本英语书98页,张力读了7天(一周)还没读完,而小明不到一周就读完了.李永平均每天比张力多读3页,小明每天读多少页?   解:设张力每天读x页,则小明读(x+3)页,由题意,得:   {98/x>7   {98/(x+3)<7   解得:11

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。