点斜式方程

2025-03-01 19:54:1396 次浏览

最佳答案

点斜式方程

点斜式方程是通过直线过的一个点和其斜率求该直线平面方程的一种方法。除此之外还有截距式,斜截式,两点式。

定义

一般地,在平面直角坐标系中,如果直线L经过点A(X1,Y1)和B(X2,Y2),其中x1≠x2,那么AB=(x2-x1,y2-y1)是L的一个方向向量,于是直线L的斜率k=(y2-y1)/(x2-x1),再由k=tanα(0≤α<π),可求出直线L的倾斜角α.记tanα=k,方程y-y0=k(x-x0)叫做直线的点斜式方程,其中(x0,y0)是直线上一点。

当α为π/2即(90度,直线与X轴垂直)时,tanα无意义,不存在点斜式方程。

点斜式方程普遍用于导数当中,用已知切线上一点和曲线方程的导数(方程上某点切线的斜率)求切线方程时用。适用于知道一个点的坐标和直线斜率,求直线方程的题目。

推导过程

方程式:y-y1=k(x-x1)

其中(x1,y1)为坐标系上过直线的一点的坐标,k为该直线的斜率。

推导:若直线L1经过点P1(x1,y1),且斜率为k,求L1方程。

设点P(x,y)是直线上不同于点P1的任意一点,直线PP1的斜率应等与直线L1的斜率,根据经过两点的直线的斜率公式得k=(y-y1)/(x-x1)(且:x≠x1)

所以,直线L1:y-y1=k(x-x1)

说明:

(1)这个方程是由直线上一点和斜率确定的,这一点必须在直线上,否则点斜式方程不成立;

(2)当直线l的倾斜角为0°时,直线方程为y=y1;

(3)当直线倾斜角为90°时,直线没有斜率,它的方程不能用点斜式表示,这时直线方程为x=x1。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。