是谁证明了一加一等于二

2025-03-06 18:58:1966 次浏览

最佳答案

有这个必要吗?

如果你期待这里有哥德巴赫猜想的完整证明,我只能说哥们儿你失望了。我说的 1 和 2 可都是纯粹的自然数。你开始不屑一顾了吧:1 + 1 = 2 不是显然的吗?可是你是否考虑过,以前学几何的时候,我们总是从一些公理开始,逐渐推出需要的结论。然而,代数的学习却不是这样。我们有的是加法表和乘法表,而这些表早已成为计算的直觉刻在脑子里。一个靠直觉构建起来的体系似乎不太让人觉得可信。如果连 1 + 1 = 2 这样简单的算式都无法证明,那么所有经由此类运算得到的结果都是不可信的,至少是不科学的。看来,我们需要挖掘一些比 1 + 1 = 2 更基本的东西。

什么是 1,什么是 2?

在证明之前,首先我们要明白什么是自然数,什么是加法。类似于几何的公理化理论体系,我们需要提出几个公理,然后据此定义自然数,进而定义加法。

先来定义自然数。根据自然数的意义(也就是人类平时数数时对自然数的运用方法),它应该是从一个数开始,一直往上数,而且想数几个就可以数几个(也就是自然数有无限个)。据此我们得到以下公理:

公理 1. 0 是一个自然数。

公理 2. 如果 n 是自然数,则 S(n) 也是自然数。

在这里, S(n) 就代表 n 的“后继”,也就是 n 往上再数一个。没错,我们平时所说的 0, 1, 2, 3, ⋯⋯,无非就是表示上述这种叫做“自然数”的数学对象的符号而已。我们用符号“0”来表示最初的那个自然数,用“1”来表示 0 的后继 S(0),而 1 的后继 S(1) 则用符号“2”来表示,等等。

可是仅有这两个公理还不够完整地描述自然数,因为满足这两条的有可能不是自然数系统。比如考虑由 0, 1, 2, 3 构成的数字系统,其中 S(3) = 0(即 3 的后一个数变回 0)。这不符合我们对于自然数系统的期望,因为它只包含有限个数。因此,我们要对自然数结构再做一下限制:

公理 3. 0 不是任何一个数的后继。

但这里面的漏洞防不胜防,此时仍不能排除如下的反例:数字系统 0, 1, 2, 3,其中 S(3) = 3。看来,我们设置的公理还不够严密。我们还得再加一条:

公理 4. 若 n 与 m 均为自然数且 n ≠ m,则 S(n) ≠ S(m)。

也就是说,互不相同的两个自然数,它们各自的后继也是两个不同的数。这样一来,上面说到的反例就可以排除了,因为 3 不可能既是 2 的后继,也是 3 的后继。

最后,为了排除一些自然数中不应存在的数(如 0.5),同时也为了满足一会儿制定运算规则的需要,我们加上最后一条公理。

公理 5. (数学归纳法)设 P(n) 为关于自然数 n 的一个性质。如果 P(0) 正确,

且假设 P(n) 正确,则 P(S(n)) 亦真实。那么 P(n) 对一切自然数 n 都正确。

有了这以上的努力,我们就可以这样定义自然数系了:存在一个自然数系 N,称其元素为自然数,当且仅当这些元素满足公理 1 - 5。

什么是加法?

我们定义,加法是满足以下两种规则的运算:

1. 对于任意自然数 m,0 + m = m;

2. 对于任意自然数 m 和 n,S(n) + m = S(n + m)。

有了这两条仅依赖于“后继”关系的加法定义,任意两个自然数相加的结果都能确定出来了。

如何证明一加一等于二?

至此,我们可以证明 1 + 1 = 2 了:

1 + 1

= S(0) + 1 (根据自然数的公理)

= S(0 + 1) (根据加法定义 2)

= S(1) (根据加法定义 1)

= 2 (根据自然数的公理)

事实上,根据加法的定义,我们不但可以证明每一个加法等式,还可以进一步证明自然数的加法结合律和交换率等一般规律。类似于加法的定义,还可以定义自然数的乘法并据此证明乘法的结合律、交换率和分配率等。如果大家对这方面问题感兴趣的话,可以看看参考文献[1].

看到这里,不知道你会不会有一种如释重负的感觉。原来,我们所知道的关于数学的一切,关于人类认识世界的一切,都不是建立在直觉之上,而是在接受几个公理的条件下通过理性的方法推导出来的。同时或许你还会有一种自由的感觉:正如你可以不接受欧几里得的公理而构造自己的几何体系一样,你也可以不接受上面的几个公理而建立自己的一套关于数的体系。你可以建立无数种奇奇怪怪的体系。不过如果是为了解释自然的话,至少从目前的角度看,现有的这套还是更好一些。

一些历史背景

上面所说的公理 1 - 5 便是著名的皮亚诺公理,它是意大利数学家皮亚诺在 1889 年发表的。虽然描述这套公理体系的数学语言发生过不少变化,但这套体系本身一直延用至今。根据这个建立在公理基础之上的自然数体系,通过引入减法可以得到整数系,再引入除法得到有理数体系。随后,通过计算有理数序列的极限(由数学家康托提出)或者对有理数系进行分割(由戴德金提出)得到实数系 [2]。这一套公理化实数体系连同同时期魏尔斯特拉斯在微积分分析化过程中的贡献(例如极限定义中的 ε-δ 语言)一道,使得早已被人类应用两百多年的微积分学能建立在一个坚实的基础上 [3]。

那要看你在什么情况下咯。1加1不是总是等于2的。比如一滴水加另一滴水,那么还是一滴。又或者酸加碱,不会得到既酸又碱的东西,因为酸碱中和,即1加1为0。当然还有最常见的1加1等于2的,那是因为这里的两个一拥有相同的性质,比如两个苹果,或者抽象点的,两段感情。因为性质相同所以它们相互独立没有融合的可能,也没有作用的过程。所以两个相加只是纯粹地表示它们的数量的多少~~~~~

第一种答案:1+1=0

(你是头脑比较零活的人)

这种人适合做人事工作,他可以用一个人对付另一个人,自己鱼翁得利,比较会整人,仕途会爬的很快,用谁交谁,真正的朋友很少。

第二种答案:1+1=1

(你的学历可能比较高,明知道等于二,但认为不会出现这么简单的问题,脑子比较复杂)

这类人的优点是一般具有管理协调能力,具有凝聚力,能让两个人拧成一股绳,这种人适合做企业的领导者。

第三种答案:1+1=2

(一般幼儿园小朋友会脱口而出)

这类人具有原则性,不管你是什么样的,我都按规律办事,做事严谨,比较适合做学者,科学家,如搞搞"神七"等

第四种答案:1+1=3

(你属于家庭主妇型),

这样的人将来一定会是好丈夫、好妻子型,会生活的人,和这样的人结婚比较幸福。

第五种答案:1+1>2

(你是外向型人,做事有激情)

这样的人能把每个事物的优点发现出来。有头脑。能把有限的力量发挥至无限,可以做政治家、军事家等。

第六种答案:1+1=王

(你属于不无正业型,也可能你是小学在读)

这样的人做科研工作或做技术开发。空间思维能力比较强。

第七种答案:1+1=丰

(你很冷静,看问题有深度)

这种人做发明家比较合适,想象力丰富,而且逻辑思维能力强。

第八种答案:1+1=田

(你很有思想,喜欢换位思考)

这种人空间想象力丰富.做设计师比较合适.

第九种答案:是我同事女儿回答的。

(庵秩撕苣压槔啵?

在小丫头二岁的时候(当时他只认识二十以内的数字)我两只手每只手伸出一个食指。靠在一起问她:“宝宝,一个加上一个等于几个”她大声说:“11”。 (我晕)

数字如此之大,远远超出了我的预料~

1+1=1表示一个爸爸和一个妈妈生了一个宝宝

1+1=3一个爸爸和一个妈妈,生了一个小宝宝后成了一个三口之家

1+1=4一个爸爸和一个妈妈,生了一对双胞胎,成了一个四口之家

哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:

(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。

这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。

从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。

到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。

目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。

在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:

1920年,挪威的布朗证明了‘“9 + 9”。

1924年,德国的拉特马赫证明了“7 + 7”。

1932年,英国的埃斯特曼证明了“6 + 6”。

1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。

1938年,苏联的布赫夕太勃证明了“5 + 5”。

1940年,苏联的布赫夕太勃证明了“4 + 4”。

1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数。

1956年,中国的王元证明了“3 + 4”。

1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。

1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。

1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”。

1966年,中国的陈景润证明了 “1 + 2 ”。

从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。

布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。关键就是要证明'至少还有一对自然数未被筛去'。目前世界上谁都未能对这一部分加以证明。要能证明,这个猜想也就解决了。

然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失的情况)存在的基础根据。所以1+2与2+2,以及1+2(或至少有一种)"类别组合"方式是确定的,客观的,也即是不可排除的。所以1+1成立是不可能的。这就彻底论证了布朗筛法不能证"1+1"。

由于素数本身的分布呈现无序性的变化,素数对的变化同偶数值的增长二者之间不存在简单正比例关系,偶数值增大时素数对值忽高忽低。能通过数学关系式把素数对的变化同偶数的变化联系起来吗?不能!偶数值与其素数对值之间的关系没有数量规律可循。二百多年来,人们的努力证明了这一点,最后选择放弃,另找途径。于是出现了用别的方法来证明歌德巴赫猜想的人们,他们的努力,只使数学的某些领域得到进步,而对歌德巴赫猜想证明没有一点作用。

歌德巴赫猜想本质是一个偶数与其素数对关系,表达一个偶数与其素数对关系的数学表达式,是不存在的。它可以从实践上证实,但逻辑上无法解决个别偶数与全部偶数的矛盾。个别如何等于一般呢?个别和一般在质上同一,量上对立。矛盾永远存在。歌德巴赫猜想是永远无法从理论上,逻辑上证明的数学结论。

版本1

一种答案:1+1=0

(你是头脑比较零活的人)

这种人适合做人事工作,他可以用一个人对付另一个人,自己鱼翁得利,比较会整人,仕途会爬的很快,用谁交谁,真正的朋友很少。

第二种答案:1+1=1

(你的学历可能比较高,明知道等于二,但认为不会出现这么简单的问题,脑子比较复杂)

这类人的优点是一般具有管理协调能力,具有凝聚力,能让两个人拧成一股绳,这种人适合做企业的领导者。

第三种答案:1+1=2

(一般幼儿园小朋友会脱口而出)

这类人具有原则性,不管你是什么样的,我都按规律办事,做事严谨,比较适合做学者,科学家,如搞搞"神七"等

第四种答案:1+1=3

(你属于家庭主妇型),

这样的人将来一定会是好丈夫、好妻子型,会生活的人,和这样的人结婚比较幸福。

第五种答案:1+1>2

(你是外向型人,做事有激情)

这样的人能把每个事物的优点发现出来。有头脑。能把有限的力量发挥至无限,可以做政治家、军事家等。

第六种答案:1+1=王

(你属于不无正业型,也可能你是小学在读)

这样的人做科研工作或做技术开发。空间思维能力比较强。

第七种答案:1+1=丰

(你很冷静,看问题有深度)

这种人做发明家比较合适,想象力丰富,而且逻辑思维能力强。

第八种答案:1+1=田

(你很有思想,喜欢换位思考)

这种人空间想象力丰富.做设计师比较合适.

第九种答案:是我同事女儿回答的。

(庵秩撕苣压槔啵?

在小丫头二岁的时候(当时他只认识二十以内的数字)我两只手每只手伸出一个食指。靠在一起问她:“宝宝,一个加上一个等于几个”她大声说:“11”。 (我晕)

数字如此之大,远远超出了我的预料~

1+1=1表示一个爸爸和一个妈妈生了一个宝宝

1+1=3一个爸爸和一个妈妈,生了一个小宝宝后成了一个三口之家

1+1=4一个爸爸和一个妈妈,生了一对双胞胎,成了一个四口之家

哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:

(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。

这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。

从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。

到了20世纪20年代,才有人开始......

你高兴,所以我高兴。朋友,希望你早日从困惑中走出来!

版本2

数学领域:

10进制,8进制,16进制,1+1=2

2进制1+1=10

其他领域:

1+1=任意

希望满足你

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。