大家都在看
高数收敛和发散的定义
最佳答案
高数(即高等数学)中,序列和级数的收敛和发散分别定义如下:
1. 序列的收敛与发散:
设$(a_n)$是一个实数序列。当存在实数$A$,使得对于任意正数$varepsilon$,都存在正整数$N$,使得当$n>N$时,$|a_n-A| o infty}a_n = A$。 当不存在实数$A$满足上述条件时,称序列$(a_n)$发散。 2. 级数的收敛与发散: 设$(a_n)$是一个实数序列。将$a_1+a_2+a_3+ cdots+a_n$的和记作$s_n$,则称数列$(s_n)$为序列$(a_n)$的部分和数列。当序列$(s_n)$收敛时,称级数$sumlimits_{n=1}^{infty}a_n$收敛,记作$sumlimits_{n=1}^{infty}a_n=s$。若序列$(s_n)$发散,则称级数$sumlimits_{n=1}^{infty}a_n$发散,记作$sumlimits_{n=1}^{infty}a_n=+infty$或$-infty$。
声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。