大家都在看
求函数周期
最佳答案
求周期,你可以把一个函数式子 化成f(x)=f(x+a)的这样形式,那么它的周期就是a (当然a>0)
例如 下面为一系列的2a为周期的函数
f(x+a)=-f(x) 所以 有f(x+a+a)=-f(x+a)=f(x) 就化解到 f(x)=f(x+2a)的形式了. 关键是运用整体思想,去代换.
你可以照这样的思路去找题,试一试.行的话,就请采纳吧
1.y=sinx/cosx=tanx,T=Pi
2,周期函数的积;商:y=y1y2;y=y1/y2的周期的情况比较复杂,只能够化成一个角的一个函数以后在来求周期.例如
y=sinxcosx=1/2*sin2x,T=Pi
y=(sinx)^2+(cosx)^2,T∈R.
y=sin3x/sinx=3-4(sinx)^2=2+cos2x,T=Pi.
它的周期似乎与T(sin3x)=2P1/3和T(sinx)=2Pi的关系不大.此外二无理数之间不存在公倍数.
周期函数是无论任何独立变量上经过一个确定的周期之后数值皆能重复的函数。
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。
由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。
周期函数的性质[1]共分以下几个类型:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合
声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。