数列的解题思想是什么

2025-03-05 02:17:0787 次浏览

最佳答案

​数列

本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.

②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

体思想求解.

(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

一、基本概念:

1、 数列的定义及表示方法:

2、 数列的项与项数:

3、 有穷数列与无穷数列:

4、 递增(减)、摆动、循环数列:

5、 数列{an}的通项公式an:

6、 数列的前n项和公式Sn:

7、 等差数列、公差d、等差数列的结构:

8、 等比数列、公比q、等比数列的结构:

二、基本公式:

9、一般数列的通项an与前n项和Sn的关系:an=

10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:Sn= Sn= Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an≠0)

13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn= Sn=

三、有关等差、等比数列的结论

14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

15、等差数列{an}中,若m+n=p+q,则

16、等比数列{an}中,若m+n=p+q,则

17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

19、两个等比数列{an}与{bn}的积、商、倒数组成的数列

{an bn}、 、 仍为等比数列。

20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

23、三个数成等比的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

24、{an}为等差数列,则 (c>0)是等比数列。

25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。

26. 在等差数列 中:

(1)若项数为 ,则

(2)若数为 则, ,

27. 在等比数列 中:

(1) 若项数为 ,则

(2)若数为 则,

四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

28、分组法求数列的和:如an=2n+3n

29、错位相减法求和:如an=(2n-1)2n

30、裂项法求和:如an=1/n(n+1)

31、倒序相加法求和:如an=

32、求数列{an}的最大、最小项的方法:

① an+1-an=…… 如an= -2n2+29n-3

② (an>0) 如an=

③ an=f(n) 研究函数f(n)的增减性 如an=

33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:

(1)当 >0,d<0时,满足 的项数m使得 取最大值.

(2)当 <0,d>0时,满足 的项数m使得 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

基本数列是等差数列和等比数列

一、等差数列

一个等差数列由两个因素确定:首项a1和公差d.

得知以下任何一项,就可以确定一个等差数列(即求出数列的通项公式):

1、首项a1和公差d

2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)

3、任意两项a(n)和a(m),n,m为已知数

等差数列的性质:

1、前N项和为N的二次函数(d不为0时)

2、a(m)-a(n)=(m-n)*d

3、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)也是等差数列

例题1:已知a(5)=8,a(9)=16,求a(25)

解: a(9)-a(5)=4*d=16-8=8

a(25)-a(5)=20*d=5*4*d=40

a(25)=48

例题2:已知a(6)=13,a(9)=19,求a(12)

解:a(6)、a(9)、a(12)成等差数列

a(12)-a(9)=a(9)-a(6)

a(12)=2*a(9)-a(6)=25

二、等比数列

一个等比数列由两个因素确定:首项a1和公差d.

得知以下任何一项,就可以确定一个等比数列(即求出数列的通项公式):

1、首项a1和公比r

2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)

3、任意两项a(n)和a(m),n,m为已知数

等比数列的性质:

1、a(m)/a(n)=r^(m-n)

2、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)是等比数列

3、等比数列的连续m项和也是等比数列

即b(n)=a(n)+a(n+1)+...+a(n+m-1)构成的数列是等比数列。

三、数列的前N项和与逐项差

1、如果数列的通项公式是关于N的多项式,最高次数为P,则数列的前N项和是关于N的多项式,最高次数为P+1。

(这与积分很相似)

2、逐项差就是数列相邻两项的差组成的数列。

如果数列的通项公式是关于N的多项式,最高次数为P,则数列的逐项差的通项公式是关于N的多项式,最高次数为P-1。

(这与微分很相似)

例子:

1,16,81,256,625,1296 (a(n)=n^4)

15,65,175,369,671

50,110,194,302

60,84,108

24,24

从上例看出,四次数列经过四次逐项差后变成常数数列。

等比数列的逐项差还是等比数列

四、已知数列通项公式A(N),求数列的前N项和S(N)。

这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。

解法是寻找一个数列B(N),

使S(N)+B(N)=S(N-1)+B(N-1)

从而S(N)=A(1)+B(1)-B(N)

猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。

例题1:求S(N)=2+2*2^2+3*2^3+...+N*2^N

解:S(N)=S(N-1)+N*2^N

N*2^N积分得(N*LN2-1)*2^N/(LN2)^2

因此设B(N)=(PN+Q)*2^N

则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N

(P*N+P+Q)/2*2^N=-N*2^N

因为上式是恒等式,所以P=-2,Q=2

B(N)=(-2N+2)*2^N

A(1)=2,B(1)=0

因此:S(N)=A(1)+B(1)-B(N)

=(2N-2)*2^N+2

例题2:A(N)=N*(N+1)*(N+2),求S(N)

解法1:S(N)为N的四次多项式,

设:S(N)=A*N^4+B*N^3+C*N^2+D*N+E

利用S(N)-S(N-1)=N*(N+1)*(N+2)

解出A、B、C、D、E

解法2:

S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3)

=C(N+3,4)

S(N)=N*(N+1)*(N+2)*(N+3)/4

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。