等比数列的公式介绍

2025-03-18 18:39:3874 次浏览

最佳答案

(1)通项公式:

(2)求和公式:

 

求和公式用文字来描述就是:

Sn=首相(1-末项)/1-公比(公比≠1)

任意两项 , 的关系为 ;在运用等比数列的前n项和时,一定要注意讨论公比q是否为1.

(3)从等比数列的定义、通项公式、前n项和公式可以推出:

(4)等比中项:

若 ,那么 为 等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。

另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。

等比中项公式: 或者 。

(5)无穷递缩等比数列各项和公式:

无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。

(6)由等比数列组成的新的等比数列的公比:

{an}是公比为q的等比数列

1.若A=a1+a2+……+an

B=an+1+……+a2n

C=a2n+1+……a3n

则,A、B、C构成新的等比数列,公比Q=q^n

2.若A=a1+a4+a7+……+a3n-2

B=a2+a5+a8+……+a3n-1

C=a3+a6+a9+……+a3n

则,A、B、C构成新的等比数列,公比Q=q

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。