大家都在看
Matlab利用离散傅里叶变换DFT 进行频谱分析
最佳答案
信号在频域能够呈现出时域不易发现的性质和规律,傅里叶变换是将信号从时域变换到频域,便于在频域对信号的特性进行分析。离散傅里叶变换 (DFT),是傅里叶变换在时域和频域上的离散呈现形式,通俗的说就是将经过采样的有限长度时域离散采样序列变换为等长度的频域离散采样序列,通过对变换得到的频域采样序列进行适当的换算和处理,可以得到信号的频谱(频率-幅值曲线和频率-相位曲线)。
离散傅里叶变换 (DFT)的定义为:[公式],式中,x(n)为时域离散采样序列(通常为实数序列),N为时域离散采样序列x(n)的长度,X(k)为频域离散采样序列(通常为复数序列)。
快速傅里叶变换(FFT)是离散傅里叶变换(DFT)的一种快速算法,FFT的计算结果与DFT完全相同,但FFT相对于DFT减小了计算量、节约计算资源消耗,能够适应在线计算,因此实际DFT都是通过FFT算法来求得结果。
Matlab软件自带fft函数实现快速傅里变换算法,但是光使用fft并不能直接得到信号的频谱,还需要解决以下问题。初学的朋友若不理解上述变换和处理技巧,很难得到正确的频谱图。为此作者在fft函数的基础上,使用Matlab开发了函数DFT.m,通过函数来实现上述幅值变换、有效频率区域和直流信号的处理,能够直接分析出给定离散信号x(n)的幅值谱和相位谱,函数简单、易用、通用性好。
下面是一些示例,展示了如何使用DFT.m进行频谱分析:
示例1:单频正弦信号(整数周期采样)
结果:...
示例2:单频正弦信号(非整数周期采样)
结果:...
总结:DFT变换后频率序列的最小单位刻度为fs/N(此例为1Hz),非整数周期采样时关心信号的频率(此例为1.5Hz)不是频率分辨率fs/N的正整数倍,那这个频率成分信号会由前后两个正整数倍的频率成分信号(此例为1Hz和2Hz)的线性组合来替代,这就是频谱泄漏现象,非周期采样时某频率成分信号向两侧频率分辨率正整数倍的频点泄漏。实际频谱分析时并不清楚所关心的频率点精确值,避免此问题的一个解决方法是,取更多的点参加DFT,即时域序列x(n)长度N值取长一些,让频率分辨率fs/N很小,以减小频谱泄漏现象。
示例3:含有直流分量的单频正弦信号
结果:...
示例4:正弦复合信号
结果:...
注意:频率为0Hz时对应的直流信号的幅值的正负号,是通过零频相位来确定的,相位为0°表示幅值为正,相位为180°表示幅值为负。
示例5:含有随机干扰的正弦信号
结果:...
示例6:实际案例
结果:...
该项目为作者在强振环境下测得加速度信号,加速度是机械结构周期运动激励产生,需要通过频谱分析获取机械结构周期运动的频率。由于噪声幅度远大于有效信号幅度,信号的信噪比很低,从时域上很难辨别机械结构周期运动的频率。但经过DFT后,从频域上可以看出信号的主要频率成分为19Hz和其倍频38Hz,可以判断机械结构周期运动的频率为19Hz,38Hz为结构响应的非线性特性所产生的倍频。
声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。