梅森素数的由来

2025-07-09 19:50:2593 次浏览

最佳答案

早在公元前300多年,古希腊数学家欧几里得就开创了研究2p-1的先河。他在名著《几何原本》第九章中论述完全数时指出:如果2p-1是素数,则 2p-1(2p-1)是完全数。

1640年6月,费马在给马林·梅森(Marin Mersenne)的一封信中写道:“在艰深的数论研究中,我发现了三个非常重要的性质,我相信它们将成为今后解决素数问题的基础。” 这封信讨论了形如2p-1的数。

马林·梅森是当时欧洲科学界一位独特的中心人物,他与包括费马在内的很多科学家经常保持通信联系,讨论数学、物理等问题。17世纪时,学术刊物和科研机构还没有创立,交往广泛、热情诚挚的梅森就成了欧洲科学家之间联系的桥梁,许多科学家都乐于将成果告诉他,然后再由他转告给更多的人。梅森还是法兰西学院的奠基人,为科学事业做了很多有益的工作,被选为 “100位在世界科学史上有重要地位的科学家” 之一。

梅森在欧几里得、费马等人有关研究的基础上对2p-1作了大量的计算、验证,并于1644年在他的《物理数学随感》一书中断言:在不大于257的素数中,当p = 2、3、5、7、13、17、19、31、67、127、257 时,2p-1是素数,其它都是合数。前面的7个数(即2、3、5、7、13、17、19)已被前人所证实,而后面的4个数(即31、67、127、257)则是梅森自己的推断。由于梅森在科学界有着崇高的学术地位,人们对其断言都深信不疑。

后来人们才知道梅森的断言其实包含着若干错漏。不过他的工作却极大地激发了人们研究2p-1型素数的热情,使其摆脱作为 “完全数” 的附庸地位,可以说梅森的工作是2p-1型素数研究的一个转折点和里程碑。由于梅森学识渊博、才华横溢、为人热情以及最早系统而深入地研究2p-1型的数,为了纪念他,数学界就把这种数称为 “梅森数”,并以Mp记之(其中M为梅森姓名的首字母),即Mp=2p-1。如果梅森数为素数,则称之为 “梅森素数”(即2p-1型素数)。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。