黎曼可积的黎曼积分

2025-10-11 00:26:08104 次浏览

最佳答案

不太严格地来说,黎曼积分就是当分割越来越“精细”的时候,黎曼和趋向的极限。下面的证明中,会对“越来越‘精细’”作出严格的定义。

要使得“越来越‘精细’”有效,需要把λ趋于0。如此[xi,xi + 1]中的函数值才会与f(ti)接近,矩形面积的和与“曲线下方”的面积的差也会越来越小。实际上,这就是黎曼积分定义的大概描述。

严格定义如下:S是函数f在闭区间[a,b]上的黎曼积分,当且仅当对于任意的ε > 0,都存在δ > 0,使得对于任意的取样分割、,只要它的子区间长度最大值足够小 ,就有:

}-

也就是说,对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限,这时候称函数f为黎曼可积的。

这个定义的缺陷是没有可操作性,因为要检验所有的取样分割是难以做到的。下面引进另一个定义,然后证明它们是等价的。

另一个定义: S是函数f在闭区间[a,b]上的黎曼积分,当且仅当对于任意的ε > 0,都存在一个取样分割、,使得对于任何比其“精细”的分割 and ,都有:

}-

这两个定义是等价的。如果有一个S满足了其中一个定义,那么它也满足另一个。首先,如果有一个S满足第一个定义,那么只需要在子区间长度最大值的分割中任取一个。对于比其精细的分割,子区间长度最大值显然也会小于δ,于是满足

}-

其次,如果有一个S满足第二个定义,首先引进达布积分的概念。首先第二个定义和达布积分的定义是等价的,具体见达布积分。其次我们证明达布积分的定义满足第一个定义。任选一个分割使得它的上达布和与下达布和都与S相差不超过 。令r等于,其中Mi和mi是f在[xi,xi + 1]上的上确界和下确界。再令δ是和}-中的较小者。可以看出,当一个分割的子区间长度最大值小于δ时, f关于它的黎曼和与上达布和或下达布和至多相差,所以和S至多相差ε。 黎曼积分是线性变换;也就是说,如果f和g在区间[a,b]上黎曼可积,α和β是常数,则:

[a,b]上的实函数f是黎曼可积的,当且仅当它是有界和几乎处处连续的。

如果[a,b]上的实函数是黎曼可积的,则它是勒贝格可积的。

如果fn是[a,b]上的一个一致收敛序列,其极限为f,那么:

如果一个实函数在区间[a,b],上是单调的,则它是黎曼可积的。 黎曼积分可推广到值属于n维空间的函数。积分是线性定义的,即如果,则。特别地,由于复数是实数vector space,故值为复数的函数也可定义积分。

黎曼积分只定义在有界区间上,扩展到无界区间并不方便。可能最简单的扩展是通过极限来定义积分,即如同瑕积分(improper integral)一样。我们可以令

不幸的是,这并不是很合适。平移不变性(如果向左或向右平移一个函数,它的黎曼积分应该保持不变)丧失了。例如,令f(x) = 1 若x > 0,f(0) = 0,f(x) = − 1若x < 0。则对所有x

.

但如果我们将f(x)向右平移一个单位得到f(x − 1),则对所有x > 1,我们得到

. 此时,如果尝试对上面的f积分,我们得到,因为我们先使用了极限。如果使用相反的极限顺序,我们得到。

这同样也是不可接受的,我们要求积分存在且与积分顺序无关。即使这满足,依然不是我们想要的,因为黎曼积分与一致极限不再具有可交换性。例如,令fn(x) = 1 / n在[0,n]上,其它域上等于0。对所有n,。但fn一致收敛于0,因此的积分是0。因此。即使这是正确的值,可看出对于极限与普通积分可交换的重要准则对瑕积分(improper integral)不适用。这限制了黎曼积分的应用。

一个更好的途径是抛弃黎曼积分而采用勒贝格积分勒贝格积分。虽然勒贝格积分是黎曼积分的扩展这点看上去并不是显而易见,但不难证明每个黎曼可积函数都是勒贝格可积的,并且当二者都有定义时积分值也是一致的。

事实上黎曼积分的一个直接扩展是Henstock-Kurzweil integral。

扩展黎曼积分的另一种途径是替换黎曼累加定义中的因子xi − xi + 1,粗略地说,这给出另一种意义上长度间距的积分。这是Riemann-Stieltjes integral所采用的方法。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。