直角三角形中,勾股定理怎样证明?

2025-02-15 19:55:4077 次浏览

最佳答案

勾股定理:a²+b²=c²

如果知道a或b的平方,就可以用a或b加一个小数字来尝试

知道c的长度,就把它拆成两个和比自己大的数字来验证

勾股定理

如果直角三角形两直角边分别为A,B,斜边为C,那么 A^2+B^2=C^2;; 即直角三角形两直角边长的平方和等于斜边长的平方。如果三角形的三条边A,B,C满足A^2+B^2=C^2;,还有变形公式:

,如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形。(称勾股定理的逆定理) 直角三角形由 毕达哥拉斯在公元前550年提出。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。