09年四川高考题数学答案

2025-02-13 10:09:58107 次浏览

最佳答案

数学(理工农医类)参考答案

一、 选择题:本体考察基本概念和基本运算。每小题5分,满分60分。

(1) C (2) B (3) A (4) D (5) D (6) B

(7) C (8) B (9) A (10)D (11) B (12) A

二、填空题:本题考查基础知识和基本运算。每小题4分,满分16分。

(13) -20 (14)4 (15) (16)①②③

三、解答题

(17)本小题主要考查同角三角函数间的关系,两角和差的三角函数、二倍角公式、正弦定理等基础知识及基本运算能力。

解:(Ⅰ) 、 为锐角, ,

又 ,

, ,

…………………………………………6分

(Ⅱ)由(Ⅰ)知 , .

由正弦定理 得

,即 ,

……………………………………12分

(18)本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考察运用概率只是解决实际问题的能力。

解:(Ⅰ)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡。设事件 为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”,

事件 为“采访该团3人中,1人持金卡,0人持银卡”,

事件 为“采访该团3人中,1人持金卡,1人持银卡”。

所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是 。

…………………………………………………………6分

(Ⅱ) 的可能取值为0,1,2,3

,

, ,

所以 的分布列为

0 1 2 3

所以 , ……………………12分

(19)本小题主要考察平面与平面垂直、直线与平面垂直、直线与平面平行、二面角

等基础知识,考察空间想象能力、逻辑推理能力和数学探究意识,考察应用向量知识解决数学问题的能力。

解法一:

(Ⅰ)因为平面 ⊥平面 , 平面 ,

平面 平面 ,

所以 ⊥平面

所以 ⊥ .

因为 为等腰直角三角形, ,

所以

又因为 ,

所以 ,

即 ⊥ ,

所以 ⊥平面 。 ……………………………………4分

(Ⅱ)存在点 ,当 为线段AE的中点时,PM‖平面

取BE的中点N,连接AN,MN,则MN‖= ‖=PC

所以PMNC为平行四边形,所以PM‖CN

因为CN在平面BCE内,PM不在平面BCE内,

所以PM‖平面BCE ……………………………………8分

(Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知,EA⊥平面ABCD

作FG⊥AB,交BA的延长线于G,则FG‖EA。从而,FG⊥平面ABCD

作GH⊥BD于G,连结FH,则由三垂线定理知,BD⊥FH

因此,∠AEF为二面角F-BD-A的平面角

因为FA=FE, ∠AEF=45°,

所以∠AFE=90°,∠FAG=45°.

设AB=1,则AE=1,AF= .

FG=AF•sinFAG=

在Rt△FGH中,∠GBH=45°,BG=AB+AG=1+ = ,

GH=BG•sinGBH= • =

在Rt△FGH中,tanFHG= =

故二面角F-BD-A的大小为arctan . ………………………………12分

解法二:

(Ⅰ)因为△ABE为等腰直角三角形,AB=AE,

所以AE⊥AB.

又因为平面ABEF⊥平面ABCD,AE 平面ABEF,

平面ABEF∩平面ABCD=AB,

所以AE⊥平面ABCD.

所以AE⊥AD.

因此,AD,AB,AE两两垂直,以A为坐标原点,建立

如图所示的直角坐标系A-xyz.

设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) ,

E ( 0, 0, 1 ), C ( 1, 1, 0 ).

因为FA=FE, ∠AEF = 45°,

所以∠AFE= 90°.

从而, .

所以 , , .

, .

所以EF⊥BE, EF⊥BC.

因为BE 平面BCE,BC∩BE=B ,

所以EF⊥平面BCE.

(Ⅱ)存在点M,当M为AE中点时,PM‖平面BCE.

M ( 0,0, ), P ( 1, ,0 ).

从而 = ,

于是 • = • =0

所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内,

故PMM‖平面BCE. ………………………………8分

(Ⅲ)设平面BDF的一个法向量为 ,并设 =(x,y,z).

取y=1,则x=1,z=3。从而 。

取平面ABD的一个法向量为 。

故二面角F—BD—A的大小为arccos 。……………………………………12分

(20)本小题主要考查直线、椭圆、平面向量等基础知识,以及综合运用数学知识解决问题及推理运算能力。

解:(Ⅰ)有条件有 ,解得 。

所以,所求椭圆的方程为 。…………………………………4分

(Ⅱ)由(Ⅰ)知 、 。

若直线l的斜率不存在,则直线l的方程为x=-1.

将x=-1代入椭圆方程得 。

不妨设 、 ,

.

,与题设矛盾。

直线l的斜率存在。

设直线l的斜率为k,则直线的方程为y=k(x+1)。

设 、 ,

联立 ,消y得 。

由根与系数的关系知 ,从而 ,

又 , ,

化简得

解得

(21)本小题主要考查函数、数列的极限、导数应用等基础知识、考查分类整合思想、推理和运算能力。

解:(Ⅰ)由题意知

当 ….(4分)

(Ⅱ)因为

由函数定义域知 >0,因为n是正整数,故0

所以

(Ⅲ)

① 当m=0时, 有实根 ,在 点左右两侧均有 故无极值

② 当 时, 有两个实根

当x变化时, 、 的变化情况如下表所示:

+ 0 - 0 +

↗ 极大值 ↘ 极小值 ↗

的极大值为 , 的极小值为

③ 当 时, 在定义域内有一个实根,

同上可得 的极大值为

综上所述, 时,函数 有极值;

当 时 的极大值为 , 的极小值为

当 时, 的极大值为

(22)本小题主要考查数列、不等式等基础知识、考查化归思想、分类整合思想,以及推理论证、分析与解决问题的能力。

解:(Ⅰ)当 时,

数列 成等比数列,其首项 ,公比是

……………………………………..3分

(Ⅱ)由(Ⅰ)知

=

(Ⅲ)由(Ⅰ)知

一方面,已知 恒成立,取n为大于1的奇数时,设

>

对一切大于1的奇数n恒成立

只对满足 的正奇数n成立,矛盾。

另一方面,当 时,对一切的正整数n都有

事实上,对任意的正整数k,有

当n为偶数时,设

<

当n为奇数时,设

<

对一切的正整数n,都有

综上所述,正实数 的最小值为4………………………….14分

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。