等比 等差数列里的所有公式

2025-02-13 20:21:12111 次浏览

最佳答案

等差数列的通项公式为:an=a1+(n-1)d (1)

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)

以上n均属于正整数。

且任意两项am,an的关系为:an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

末项=首项+(项数-1)×公差

等比公式

(1)等比数列的通项公式是:An=A1*q^(n-1)

若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

(2)求和公式:Sn=nA1(q=1)

Sn=A1(1-q^n)/(1-q)

=(a1-a1q^n)/(1-q)

=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)

(前提:q不等于 1)

任意两项am,an的关系为an=am·q^(n-m)

(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。