多边形内角和公式推导

2025-02-20 09:42:5375 次浏览

最佳答案

多边形内角和公式推导如下:

从一个顶点出发可以引出(n-3)条对角线,这样把多边形分割成了(n-2)个三角形,可知这(n-2)个三角形的内角的总和恰好是n边形的内角和,故而可得n边形的内角和为(n-2)*180°。

1、多边形

数学用语,由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。

在不同平面上的多条线段首尾顺次连结且不相交所组成的图形也被称为多边形,是广义的多边形。

组成多边形的线段至少有3条,三角形是最简单的多边形。

组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所组成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。

多边形内角的一边与另一边反向延长线所组成的角,叫做多边形的外角。

在多边形的每一个顶点处取这个多边形的一个外角,它们的和叫做多边形的外角和。

多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

多边形分平面多边形和空间多边形。平面多边形的所有顶点全在同一个平面上,空间多边形至少有一个顶点和其它的顶点不在同一个平面上。

多边形也可以分为凸多边形及凹多边形,凸多边形全部都是平面多边形(平面多边形不等于凸多边形,还包括平面的凹多边形),但是凹多边形却非全是空间多边形,也有平面凹多边形。

2、内角和

内角和(sumofinnerangles)是一个数学名词,多边形的所有内角度数总和叫做内角和。

不管怎么改变多边形的形状,其内角和都为相同。

已知一个多边形边数,那么它的内角和等于(边数-2)×180°。

已知一个多边形的内角和,那么它的边数等于内角和÷180°+2。

声明:知趣百科所有作品均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请在页面底部查找“联系我们”的链接,并通过该渠道与我们取得联系以便进一步处理。